RENESAS

HA16116FP/FPJ, HA16121FP/FPJ
 Switching Regulator for Chopper Type DC/DC Converter

REJ03F0056-0200Z
(Previous: ADE-204-019A)
Rev.2.0
Sep.18.2003

Description

HA16116FP/FPJ and HA16121FP/FPJ are dual-channel PWM switching regulator controller ICs for use in chopper-type DC/DC converters.

This IC series incorporates totem pole gate drive circuits to allow direct driving of a power MOS FET. The output logic is preset for booster, step-down, or inverting control in a DC/DC converter. This logic assumes use of an N-channel power MOS FET for booster control, and a P-channel power MOS FET for step-down or inverting control.

HA16116 includes a built-in logic circuit for step-down control only, and one for use in both step-down and inverting control. HA16121 has a logic circuit for booster control only and one for both step-down and inverting control.

Both ICs have a pulse-by-pulse current limiter, which limits PWM pulse width per pulse as a means of protecting against overcurrent, and which uses an on/off timer for intermittent operation. Unlike conventional methods that use a latch timer for shutdown, when the pulse-by-pulse current limiter continues operation beyond the time set in the timer, the IC is made to operate intermittently (flickering operation), resulting in sharp vertical setting characteristics. When the overcurrent condition subsides, the output is automatically restored to normal.

The dual control circuits in the IC output identical triangle waveforms, for completely synchronous configuring a compact, high efficiency dual-channel DC/DC converter, with fewer external components than were necessary previously.

Functions

- 2.5 V reference voltage (Vref) regulator
- Triangle wave form oscillator
- Dual overcurrent detector
- Dual totem pole output driver
- UVL (under voltage lock out) system
- Dual error amplifier
- Vref overvoltage detector
- Dual PWM comparator

Features

- Wide operating supply voltage range* (3.9 V to 40.0 V)
- Wide operating frequency range (600 kHz maximum operation)
- Direct power MOS FET driving (output current ± 1 A peak in maximum rating)
- Pulse-by-pulse overcurrent protection circuit with intermittent operation function (When overcurrent state continues beyond time set in timer, the IC operates intermittently to prevent excessive output current.)
- Grounding the ON/OFF pin turns the IC off, saving power dissipation. (HA16116: $\mathrm{I}_{\text {OFF }}=10 \mu \mathrm{~A}$ max.; HA16121: $\mathrm{I}_{\text {OFF }}=150 \mu \mathrm{~A}$ max.)
- Built-in UVL circuit (UVL voltage can be varied with external resistance.)
- Built-in soft start and quick shutoff functions

Note: The reference voltage 2.5 V is under the condition of $\mathrm{V}_{\mathrm{IN}} \geq 4.5 \mathrm{~V}$.

Ordering Information

Hitachi Control ICs for Chopper-Type DC/DC Converters

Channels	Product Number	Channel No.	Control Functions			Output Circuits	Overcurrent Protection
			Step-Up	Step-Down	Inverting		
Dual	HA17451	Ch 1	\bigcirc	\bigcirc	\bigcirc	Open collector	SCP with timer (latch)
		Ch 2	\bigcirc	\bigcirc	\bigcirc		
Single	HA16114	-	-	\bigcirc	\bigcirc	Totem pole power MOS FET driver	Pulse-by-pulse current limiter and intermittent operation by on/off timer
	HA16120	-	\bigcirc	-	-		
Dual	HA16116	Ch 1	-	\bigcirc	\bigcirc		
		Ch 2	-	\bigcirc	-		
	HA16121	Ch 1	-	\bigcirc	\bigcirc		
		Ch 2	\bigcirc	-	-		

Pin Arrangement

Notes: 1. Pins S.GND (pin 1) and P.GND (pin 10) have no direct internal interconnection. Both pins must be connected to ground.
2. Pins S. $\mathrm{V}_{\text {IN }}$ (pin 20) and P.V ${ }_{\text {IN }}$ (pin 11) have no direct internal interconnection. Both pins must be connected to V_{IN}.

Pin Functions

Notes: 1. Here "output stage" refers to the power MOS FET driver circuits, and "signal circuitry" refers to all other circuits on the IC. Note that this IC is not protected against reverse insertion, which can cause breakdown of the IC between $\mathrm{V}_{\mathbb{I N}}$ and GND. Be careful to insert the IC correctly.
2. Noninverting input of the channel 2 error amp is connected internally to Vref.

Block Diagram

Function and Timing Chart

Note: On duty $=\mathrm{t}_{\mathrm{ON}} / \mathrm{T}$, where $\mathrm{T}=1 / \mathrm{f}_{\mathrm{OSC}}$.

Determining External Component Constants (pin usage)

Constant settings are explained for the following items.

1. Oscillator Frequency ($f_{\text {osc }}$) Setting

Figure 1.1 shows an equivalent circuit for the triangle wave oscillator.

Figure 1.1 Equivalent Circuit for the Triangle Wave Oscillator

HA16116FP/FPJ, HA16121FP/FPJ

The triangle wave is a voltage waveform used as a reference in creating a PWM pulse. This block operates according to the following principles. A constant current I_{O}, determined by an external timing resistor R_{T}, is made to flow continuously to external timing capacitor C_{T}. When the C_{T} pin voltage exceeds the comparator threshold voltage V_{H}, the comparator output causes a switch to operate, discharging a current I_{O} from C_{T}. Next, when the C_{T} pin voltage drops below threshold voltage V_{L}, the comparator output again causes the switch to operate, stopping the I_{o} discharge. The triangle wave is generated by this repeated operation.

Note that $\mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~V} / \mathrm{R}_{\mathrm{T}}$. Since the I_{O} current mirror circuit has a very limited current producing ability, R_{T} should be set to $\geq 5 \mathrm{k} \Omega\left(\mathrm{I}_{\mathrm{o}} \geq 220 \mu \mathrm{~A}\right)$.

With this IC series, V_{H} and V_{L} of the triangle wave are fixed internally at about 1.6 V and 1.0 V by the internal resistors R_{A}, R_{B}, and R_{C}. The oscillator frequency can be calculated as follows.

$$
\mathrm{f}_{\mathrm{OSC}}=\frac{1}{t_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}}
$$

Here,

$$
\begin{aligned}
t_{1} & =\frac{C_{T} \cdot\left(V_{H}-V_{L}\right)}{1.1 V^{2} / R_{T}}=\frac{C_{T} R_{T} \cdot\left(V_{H}-V_{L}\right)}{1.1 \mathrm{~V}} \\
t_{2} & =\frac{C_{T} \cdot\left(V_{H}-V_{L}\right)}{(2-1) \times 1.1 \mathrm{~V} / R_{T}}=\frac{C_{T} R_{T} \cdot\left(V_{H}-V_{L}\right)}{1.1 \mathrm{~V}}=t_{1} \\
\mathrm{~V}_{H} & -V_{L}=0.6 \mathrm{~V} \\
t_{1} & =t_{2}=\frac{0.6}{1.1} C_{T} R_{T} \\
t_{3} & \approx 0.8 \mu \mathrm{~s} \text { (comparator delay time in the oscillator) }
\end{aligned}
$$

Accordingly,

$$
\mathrm{f}_{\mathrm{OSC}} \approx \frac{1}{2 \mathrm{t}_{1}+\mathrm{t}_{3}} \approx \frac{1}{1.1 \mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}+0.8 \mu \mathrm{~s}}[\mathrm{~Hz}]
$$

Note that the value of $\mathrm{f}_{\text {osc }}$ may differ slightly from the above calculation depending on the amount of delay in the comparator circuit. Also, at high frequencies this comparator delay can cause triangle wave overshoot or undershoot, skewing the dead band threshold. Confirm the actual value in implementation and adjust the constants accordingly.
2. DC/DC Converter Output Voltage Setting and Error Amp Usage
2.1 Positive Voltage Booster ($\mathrm{V}_{\mathrm{o}}>\mathrm{V}_{\text {IN }}$) or Step-Down ($\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{o}}>$ Vref)

Use $V_{O}=\frac{R_{1}+R_{2}}{R_{2}}$. Vref (V)
Booster output is possible only at channel 2 of HA16121. For step-down output, both channels of HA16116 or channel 1 of HA16121 are used.

Figure 2.1

2.2 Negative Voltage ($\mathrm{V}_{\mathrm{o}}<$ Vref) for Inverting Output

Use $\mathrm{V}_{\mathrm{O}}=-\mathrm{Vref} \cdot\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot \frac{\mathrm{R}_{3}+\mathrm{R}_{4}}{R_{3}}-1\right)(\mathrm{V})$
Channel 1 is used for inverting output on both ICs.

Figure 2.2 Inverting Output

2.3 Error Amplifier

Figure 2.3 shows an equivalent circuit of the error amplifier. The error amplifier on these ICs is configured of a simple NPN transistor differential input amplifier and the output circuit of a constant-current driver.

This amplifier features wide bandwidth ($\mathrm{f}_{\mathrm{T}}=4 \mathrm{MHz}$) with open loop gain kept to 50 dB , allowing stable feedback to be applied when the power supply is designed. Phase compensation is also easy.

Both HA16116 and HA16121 have a noninverting input (IN(+)) pin, in order to allow use of the channel 1 error amplifier for inverting control. The channel 2 error amplifier, on the other hand, is used for stepdown control in HA16116 and booster control in HA16121; so the channel 2 noninverting input is connected internally to Vref.

Figure 2.3 Error Amplifier Equivalent Circuit

3. Dead Band (DB) Duty and Soft Start Setting (common to both channels)

3.1 Dead Band Duty Setting

Dead band duty is set by adjusting the DB pin input voltage $\left(\mathrm{V}_{\mathrm{DB}}\right)$. A convenient means of doing this is to connect two external resistors to the Vref of this IC so as to divide $V_{D B}$ (see figure 3.1).

$$
\begin{array}{ll}
& \mathrm{V}_{\mathrm{DB}}=\mathrm{Vref} \times \frac{\mathrm{R}_{2}}{R_{1}+R_{2}}(\mathrm{~V}) \\
& \text { Duty }(\mathrm{DB})=\frac{\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{DB}}}{\mathrm{~V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{TL}}} \times 100(\%) \cdots \text { This applies when } \mathrm{V}_{\mathrm{DB}}>\mathrm{V}_{\mathrm{TL}} . \\
& \text { If } \mathrm{V}_{\mathrm{DB}}<\mathrm{V}_{\mathrm{TL}} \text {, there is no } \mathrm{PWM}
\end{array}
$$

Vref is typically 2.5 V . Select R_{1} and R_{2} so that $1.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DB}} \leq 1.6 \mathrm{~V}$.

Figure 3.1 Dead Band Duty Setting

3.2 Soft Start (SST) Setting (each channel)

When the power is turned on, the soft start function gradually raises V_{DB} (refer to section 3.1), and the PWM output pulse width gradually widens. This function is realized by adding a capacitor C_{ST} to the DB pin. The function is realized as follows.

In the figure 3.2 , the DB pin is clamped internally at approximately 0.8 V , which is 0.2 V lower than the triangle wave $\mathrm{V}_{\mathrm{TL}}=1.0 \mathrm{~V}$ typ.
$t_{A^{\prime}}$: Standby time until PWM pulse starts widening.
t_{B} : Time during which SST is in effect.
During soft start, the DB pin voltage in the figure below is as expressed in the following equation.

$$
V_{S S T}=V_{D B} \cdot\left(1-e^{\frac{-t-t_{0.8}}{T}}\right), \quad t_{S S T}=t_{A}+t_{B}
$$

Here,

$$
\mathrm{t}_{0.8}=-\mathrm{T} \ln \left(1-\frac{0.8}{\mathrm{~V}_{\mathrm{DB}}}\right), \quad \mathrm{T}=\mathrm{C}_{\mathrm{ST}} \cdot\left(\mathrm{R}_{1} / / \mathrm{R}_{2}\right)
$$

How to select values: If the soft start time $\mathrm{t}_{\mathrm{SST}}$ is too short, the $\mathrm{DC} / \mathrm{DC}$ converter output voltage will tend to overshoot. To prevent this, set $\mathrm{t}_{\mathrm{SST}}$ to a few tens of ms or above.

Figure 3.2 Soft Start (SST) Setting

4. Totem Pole Output Stage Circuit and Power MOS FET Driving Method

The output stage of this IC series is configured of totem pole circuits, allowing direct connection to a power MOS FET as an external switching device, so long as $\mathrm{V}_{\text {IN }}$ is below the gate breakdown voltage.

If there is a possibility that V_{IN} will exceed the gate breakdown voltage of the power MOS FET, a Zener diode circuit like that shown figure 4.1 or other protective measures should be used. The figure 4.1 shows an example using a P-channel power MOS FET.

Figure 4.1 P-channel Power MOS FET (example)

5. Vref Undervoltage Error Prevention (UVL) and Overvoltage Protection (OVP) Functions

5.1 Operation Principles

The reference voltage circuit is equipped with UVL and OVP functions.

- UVL

In normal operation the Vref output voltage is fixed at 2.5 V . If $\mathrm{V}_{\text {IN }}$ is lower than normal, the UVL circuit detects the Vref output voltage with a hysteresis of 1.7 V and 2.0 V , and shuts off the PWM output if Vref falls below this level, in order to prevent malfunction.

- OVP

The OVP circuit protects the IC from inadvertent application of a high voltage from outside, such as if $\mathrm{V}_{\text {IN }}$ is shorted. A Zener diode (5.6 V) and resistor are used between Vref and GND for overvoltage detection. PWM output is shut off if Vref exceeds approximately 7.0 V.
Note that the PWM output pulse logic and the precision of the switching regulator output voltage are not guaranteed at an applied voltage of 2.5 V to 7 V .

5.2 Quick Shutoff

When the UVL circuit goes into operation, a sink transistor is switched on as in the figure below, drawing off the excess current. This transistor also functions when the IC is turned off, drawing off current from the $\mathrm{C}_{\mathrm{T}}, \mathrm{E} / \mathrm{O}$, and DB pins and enabling quick shutoff.

Figure 5.1 Quick Shutoff

6. Setting of Intermittent Operation Timing when Overcurrent is Detected

6.1 Operation Principles

The current limiter on this IC detects overcurrent in each output pulse, providing pulse-by-pulse overcurrent protection by limiting pulse output whenever an overcurrent is detected. If the overcurrent state continues, the TIM pin and ON/OFF pin can be used to operate the IC intermittently. As a result, a power supply with sharp vertical characteristics can be configured.

The ON/OFF timing for intermittent operation makes use of the hysteresis in the ON/OFF pin threshold voltage $\mathrm{V}_{\text {ON }}$ and $\mathrm{V}_{\text {OFF }}$, such that $\mathrm{V}_{\text {ON }}-\mathrm{V}_{\text {OFF }}=\mathrm{V}_{\text {BE }}$. Setting method is performed as described on the following pages. V_{BE} is based-emitter voltage of internal transistor.
Note: When an overcurrent is detected in one channel of this IC but not the other, the pulse-by-pulse current limiter still goes into operation on both channels. Also, when the intermittent operation feature is not used, the TIM pin should be set to open state and the ON/OFF pin pulled up to high level (above $\mathrm{V}_{\text {ON }}$).

Figure 6.1 Connection Diagram (example)

6.2 Intermittent Operation Timing Chart ($\mathrm{V}_{\text {on } / \text { OfF }}$ only $)$

a. Continuous overcurrent detected
b. Intermittent operation starts (IC is off)
c. Overcurrent cleared (dotted line)

Note: $1 . \mathrm{V}_{\mathrm{BE}}$ is the base-emitter voltage in transistors on the IC, and is approximately 0.7 V
(see the figure 7.1).
For details, see the overall waveform timing diagram.
Figure 6.2 Intermittent Operation Timing Chart

HA16116FP/FPJ, HA16121FP/FPJ

6.3 Calculating Intermittent Operation Timing

Intermittent operation timing is calculated as follows.
(1) T_{ON} time (the time until the IC is shut off when continuous overcurrent occurs)

$$
\left.\begin{array}{rl}
\mathrm{T}_{\mathrm{ON}} & =\mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}} \times \mathrm{R}_{\mathrm{B}} \times \ln \left(\frac{3 \mathrm{~V}_{\mathrm{BE}}}{2 \mathrm{~V}_{\mathrm{BE}}}\right) \times\left(\frac{1}{1-\text { Onduty }^{*}}\right) \\
& =\mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}} \times \mathrm{R}_{\mathrm{B}} \times \ln 1.5 \times\left(\frac{1}{1-\text { On duty}}{ }^{*}\right.
\end{array}\right) \approx 0.4 \times \mathrm{C}_{\mathrm{ON} / \overline{\text { OFF }}} \times \mathrm{R}_{\mathrm{B}} \times\left(\frac{1}{1-\text { On duty }^{*}}\right)
$$

(2) $T_{\text {OFF }}$ time (when the IC is off, the time until it next goes on)

$$
\mathrm{T}_{\mathrm{OFF}}=\mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}} \times\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) \times \ln \left(\frac{\mathrm{V}_{\mathrm{IN}}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{IN}}-3 \mathrm{~V}_{\mathrm{BE}}}\right)
$$

$$
\text { Where, } \mathrm{V}_{\mathrm{BE}} \approx 0.7 \mathrm{~V}
$$

Note: 1. On duty is the percent of time the IC is on during one PWM cycle when the pulse-by-pulse current limiter is operating.
From the first equation (1) above, it is seen that the shorter the time $T_{O N}$ when the pulse-by-pulse current limiter goes into effect (resulting in a larger overload), the smaller the value T_{ON} becomes.

As seen in the second equation (2), $\mathrm{T}_{\text {OFF }}$ is a function of V_{IN}. Further, according to this setting, when V_{IN} is switched on, the IC goes on only after $\mathrm{T}_{\text {off }}$ has elapsed.

Note: On duty is the percent of time the IC is on during one PWM cycle when the pulse-by-pulse current limiter is operating.

Figure 6.3
6.4 Examples of Intermittent Operation Timing (calculated values)
(1) T_{ON}
$\mathrm{T}_{\mathrm{ON}}=\mathrm{T}_{1} \times \mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}} \times \mathrm{R}_{\mathrm{B}}$
Here, coefficient
$T_{1}=0.4 \times \frac{1}{1-\text { On duty }}$
from section 6.3 (1) previously.
Example: If $\mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}}=2.2 \mu \mathrm{~F}$, $R_{B}=4.7 \mathrm{k} \Omega$, and the on duty of the current limiter is 75%, then $\mathrm{T}_{\mathrm{ON}}=16 \mathrm{~ms}$.

Figure 6.4 Examples of Intermittent Operation Timing (1)
(2) $T_{\text {OFF }}$
$\mathrm{T}_{\mathrm{OFF}}=\mathrm{T}_{2} \times \mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}} \times\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right)$
Here, coefficient
$T_{2}=\ln \frac{V_{I N}-2 V_{B E}}{V_{I N}-3 V_{B E}}$
from section 6.3 (2) previously.
Example: If $\mathrm{C}_{\mathrm{ON} / \overline{\mathrm{OFF}}}=2.2 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{B}}=4.7 \mathrm{k} \Omega$,
$\mathrm{R}_{\mathrm{A}}=390 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, then $\mathrm{T}_{\text {OFF }}=60 \mathrm{~ms}$.

Figure 6.5 Examples of Intermittent Operation Timing (2)

Figure 6.6

7. ON/OFF Pin Usage

7.1 IC Shutoff by the ON/OFF Pin

As shown in the figure 7.1, these ICs can be turned off safely by lowering the voltage at the ON/OFF pin to below $2 \mathrm{~V}_{\mathrm{BE}}$. This feature is used to conserve the power in the power supply system. In off state the IC current consumption ($\mathrm{I}_{\text {OFF }}$) is $10 \mu \mathrm{~A}$ (Max) for HA16116 and $150 \mu \mathrm{~A}$ (Max) for HA16121.

The ON/OFF pin can also be used to drive logic ICs such as TTL or CMOS with a sink current of $50 \mu \mathrm{~A}$ (Typ) at an applied voltage of 5 V . When it is desired to employ this feature along with intermittent operation, an open collector or open drain logic IC should be used.

Figure 7.1 IC Shutoff by the ON/OFF Pin

7.2 Adjusting UVL Voltage (when intermittent operation is not used)

The UVL voltage setting in this IC series can be adjusted externally as shown below.
Using the relationships shown in the figure, the UVL voltage in relation to $\mathrm{V}_{\text {IN }}$ can be adjusted by changing the relative values of V_{TH} and V_{TL}.

When the IC is operating, transistor Q_{4} is off, so $\mathrm{V}_{\mathrm{ON}}=3 \mathrm{~V}_{\mathrm{BE}} \approx 2.1 \mathrm{~V}$. Accordingly, by connecting resistors R_{C} and R_{D}, the voltage at which UVL is cancelled is as follows.

$$
\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V} \times \frac{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{D}}}{\mathrm{R}_{\mathrm{D}}}
$$

This $\mathrm{V}_{\text {IN }}$ is simply the supply voltage at which the UVL stops functioning, so in this state Vref is still below 2.5 V . In order to restore Vref to 2.5 V , a $\mathrm{V}_{\text {IN }}$ of approximately 4.3 V should be applied.

With this IC series, $\mathrm{V}_{\text {ON/OFF }}$ makes use of the V_{BE} of internal transistors, so when designing a power supply system it should be noted that V_{ON} has a temperature dependency of around $-6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Figure 7.2 Adjusting UVL Voltage

Overcurrent Detection Value Setting

The overcurrent detection value V_{TH} for this IC series is 0.2 V (Typ) and the bias current is $200 \mu \mathrm{~A}$ (Typ) The power MOS FET peak current value before the current limiter goes into operation is derived from the following equation.

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{V}_{\mathrm{TCL}}-\left(\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{CS}}\right) \cdot \mathrm{I}_{\mathrm{BCL}}}{\mathrm{R}_{\mathrm{CS}}}
$$

Here $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CL}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CL}}$ is a voltage referd on GND.
Note that C_{F} and R_{CS} form a low-pass filter, determined by their time constants, that prevents malfunctions from current spikes when the power MOS FET is turned on or off.

Figure 8.1 Example for Step-Down Use
The sample values given in this figure are calculated from the following equation.

$$
\mathrm{I}_{\mathrm{D}}=\frac{0.2 \mathrm{~V}-(240 \Omega+0.05 \Omega) \times 200 \mu \mathrm{~A}}{0.05 \Omega}=3.04[\mathrm{~A}]
$$

The filter cutoff frequency is calculated as follows.

$$
f_{C}=\frac{1}{2 \pi C_{F} R_{F}}=\frac{1}{6.28 \times 1800 \mathrm{pF} \times 240 \Omega}=370[\mathrm{kHz}]
$$

Absolute Maximum Ratings

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Rating		Unit
		HA16116FP, HA16121FP	HA16116FPJ, HA16121FPJ	
Supply voltage	$\mathrm{V}_{\text {IN }}$	40	40	V
Output current (DC)	I_{0}	± 0.1	± 0.1	A
Output current (peak)	Io peak	± 1.0	± 1.0	A
Current limiter pin voltage	$V_{\text {cL }}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	V
Error amp input voltage	$\mathrm{V}_{\text {IEA }}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	V
E/O input voltage	$\mathrm{V}_{\text {IEO }}$	Vref	Vref	V
RT pin source current	$\mathrm{I}_{\text {RT }}$	500	500	$\mu \mathrm{A}$
TIM pin sink current	$\mathrm{I}_{\text {т }}$	20	20	mA
Power dissipation*1	P_{T}	$680{ }^{* 1}$	$680{ }^{* 1}$	mW
Operation temperature range	Topr	-40 to +85	-40 to +85	${ }^{\circ} \mathrm{C}$
Junction temperature	TjMax	125	125	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-55 to +125	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: 1. This value is based on actual measurements on a $40 \times 40 \times 1.6 \mathrm{~mm}$ glass epoxy circuit board. At a wiring density of 10%, it is the permissible value up to $\mathrm{Ta}=45^{\circ} \mathrm{C}$, but at higher temperatures this value should be derated by $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. At a wiring density of 30% it is the permissible value up to $\mathrm{Ta}=64^{\circ} \mathrm{C}$, but at higher temperatures it should be derated by $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

HA16116FP/FPJ, HA16121FP/FPJ

Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=300 \mathrm{kHz}\right)$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Reference voltage block	Output voltage	Vref	2.45	2.50	2.55	V	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$
	Line regulation	Line	-	30	60	mV	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$
	Load regulation	Load	-	30	60	mV	$0 \leq \mathrm{I}_{\mathrm{O}} \leq 10 \mathrm{~mA}$
	Output shorting current	$\mathrm{I}_{\text {Os }}$	10	25	-	mA	$\mathrm{Vref}=0 \mathrm{~V}$
	Vref OVP voltage	Vrovp	6.2	6.8	7.0	V	
	Output voltage temperature dependence	$\Delta \mathrm{Vref} / \Delta \mathrm{Ta}$	-	100	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	

HA16116FP/FPJ, HA16121FP/FPJ

Electrical Characteristics (cont.)

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{f}_{\text {OSC }}=300 \mathrm{kHz}\right)$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Error amp block	Input offset voltage	$V_{\text {IOEA }}$	-	2	10	mV	
	Input bias current	$\mathrm{I}_{\text {beA }}$	-	0.8	2	$\mu \mathrm{A}$	
	Output sink current	$\mathrm{I}_{\text {osink (EA) }}$	28	40	52	$\mu \mathrm{A}$	In open loop, $\mathrm{V}_{1}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V}$
	Output source current	$\mathrm{I}_{\text {Osource (EA) }}$	28	40	52	$\mu \mathrm{A}$	In open loop, $\mathrm{V}_{1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=1 \mathrm{~V}$
	Voltage gain	A_{v}	40	50	-	dB	$\mathrm{f}=10 \mathrm{kHz}$
	Unity gain band-width	BW	3	4	-	MHz	
	High-level output voltage	$\mathrm{V}_{\text {OHEA }}$	2.2	3.0	-	V	$\mathrm{I}_{\mathrm{o}}=10 \mu \mathrm{~A}$
	Low-level output voltage	$\mathrm{V}_{\text {OLEA }}$	-	0.2	0.5	V	$\mathrm{I}_{\mathrm{o}}=10 \mu \mathrm{~A}$
Overcurrent detection block	Threshold voltage	$\mathrm{V}_{\text {TCL }}$	$\mathrm{V}_{10}-0.22$	$\mathrm{V}_{10}-0.2$	$\mathrm{V}_{\text {IN }}-0.18$	V	
	CL bias current	$\mathrm{I}_{\text {BCL }}$	150	200	250	$\mu \mathrm{A}$	$\mathrm{C}_{\mathrm{L}}=\mathrm{V}_{\text {IN }}$
	Operating time	$\mathrm{t}_{\text {offCL }}$	-	200	300	ns	$\mathrm{C}_{\mathrm{L}}=\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}$
			-	500	600	ns	Applies only to ch 2 of HA16121
Output stage	Output low voltage	$\mathrm{V}_{\text {out }}$	-	0.7	2.2	V	$\mathrm{I}_{\text {osink }}=10 \mathrm{~mA}$ Applies only to HA16116
			-	1.6	1.9	V	$\mathrm{I}_{\text {osink }}=10 \mathrm{~mA}$ Applies only to HA16121
			-	1.0	1.3	V	$\mathrm{I}_{\mathrm{osink}}=0 \mathrm{~mA}$ Applies only to HA16121
	Off state low voltage	$\mathrm{V}_{\text {OL2 }}$	-	1.6	1.9	V	$\mathrm{I}_{\text {Osink }}=1 \mathrm{~mA}$ ON/OFF pin $=0 \mathrm{~V}$ Applies only to ch 2 of HA16121
			-	1.0	1.3	V	$\mathrm{I}_{\text {Osink }}=0 \mathrm{~mA}$ ON/OFF = 0 V Applies only to ch 2 of HA16121
	Output high voltage	$\mathrm{V}_{\text {OH1 }}$	$\mathrm{V}_{\text {IN }}-1.9$	$\mathrm{V}_{\text {w }}$-1.6	-	V	$\mathrm{I}_{\text {osuree }}=10 \mathrm{~mA}$
			$\mathrm{V}_{\text {IN }}-1.3$	$\mathrm{V}_{\text {IN }}-1.0$	-	V	$\mathrm{I}_{\text {osurice }}=0 \mathrm{~A}$
	Off state high voltage	$\mathrm{V}_{\text {он2 }}$	$\mathrm{V}_{\text {N }}-1.9$	$\mathrm{V}_{\text {IN }}-1.6$	-	V	$\mathrm{I}_{\text {osource }}=1 \mathrm{~mA}$ ON/OFF pin $=0 \mathrm{~V}$
			$\mathrm{V}_{\text {IN }}-1.3$	$\mathrm{V}_{\text {w }}-1.0$	-	V	$\begin{aligned} & \mathrm{I}_{\text {osoure }}=0 \mathrm{~A} \\ & \text { ON/OFF pin }=0 \mathrm{~V} \end{aligned}$
	Rise time	t_{r}	-	70	130	ns	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\left(\right.$ to $\mathrm{V}_{\mathbb{N}}$) ${ }^{* 1, * 2}$
	Fall time	t_{f}	-	70	130	ns	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\left(\right.$ to $\mathrm{V}_{\text {IN }}$) ${ }^{* 1, * 2}$

HA16116FP/FPJ, HA16121FP/FPJ

Electrical Characteristics (cont.)

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{osC}}=300 \mathrm{kHz}\right)
$$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
UVL block	$\mathrm{V}_{\text {IN }}$ high-level threshold voltage	$\mathrm{V}_{\text {TUH }}$	3.3	3.6	3.9	V	
	$\mathrm{V}_{\text {IN }}$ low-level threshold voltage	$\mathrm{V}_{\text {TUL } 1}$	3.0	3.3	3.6	V	
	V_{IN} threshold differential voltage	$\Delta \mathrm{V}_{\text {TU1 }}$	0.1	0.3	0.5	V	$\Delta \mathrm{V}_{\text {TU1 }}=\mathrm{V}_{\text {TUH1 }}-\mathrm{V}_{\text {TUL1 }}$
	Vref high-level threshold voltage	$\mathrm{V}_{\text {TUH2 }}$	1.7	2.0	2.3	V	
	Vref low-level threshold voltage	$\mathrm{V}_{\text {TUL } 2}$	1.4	1.7	2.0	V	
	Vref threshold differential voltage	$\Delta \mathrm{V}_{\text {TU2 }}$	0.1	0.3	0.5	V	$\Delta \mathrm{V}_{\text {TU2 }}=\mathrm{V}_{\text {TUH2 }}-\mathrm{V}_{\text {TUL2 }}$
ON/OFF block	ON/OFF pin sink current	$\mathrm{I}_{\text {on OFF }}$	-	35	50	$\mu \mathrm{A}$	ON/OFF pin $=5 \mathrm{~V}$
	IC on-state voltage	$\mathrm{V}_{\text {ON }}$	1.8	2.1	2.4	V	
	IC off-state voltage	$\mathrm{V}_{\text {off }}$	1.1	1.4	1.7	V	
	ON/OFF threshold differential voltage	$\Delta \mathrm{V}_{\text {onoff }}$	0.5	0.7	0.9	V	
TIM block	TIM pin sink current in steady state	$\mathrm{I}_{\text {TM1 }}$	0	-	10	$\mu \mathrm{A}$	$C L$ pin $=\mathrm{V}_{\mathbb{N}}, \mathrm{V}_{\text {TM }}=0.3 \mathrm{~V}$
	TIM pin sink current at overcurrent detection	$\mathrm{I}_{\text {TM } 2}$	10	15	20	mA	$\begin{aligned} & C L \text { pin }=V_{\text {IN }}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {TM }}=0.3 \mathrm{~V} \end{aligned}$
Common block	Operating current	$\mathrm{I}_{\text {N }}$	6.0	8.5	11.1	mA	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ (to $\mathrm{V}_{\text {IN }}$)*1**2
			8.5	12.1	15.7	mA	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\left(\text { to } \mathrm{V}_{\text {IN }}\right)^{* 1, * 2}$
			11.0	15.7	20.5	mA	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\left(\right.$ to $\mathrm{V}_{\text {N1 }}$) ${ }^{* 1, *^{2}}$
	Off current	$\mathrm{I}_{\text {off }}$	0	-	10	$\mu \mathrm{A}$	HA16116FP ON/OFF
			0	120	150	$\mu \mathrm{A}$	HA16121FP $\mathrm{pin}=0 \mathrm{~V}$

Notes: 1. C_{L} is load capacitor for Power MOS FET's gate, and $C_{L}=1000 \mathrm{pF}$ to GND in the case of HA16121 - ch 2.
2. C_{L} in channel 2 of HA16121 is connected to GND.

Characteristic Curves

- Reference Voltage Block (Vref)

- UVL (Low Input Voltage Malfunction Prevention) Block

- Triangle Wave Oscillator Block

- Error Amplifier Block

- On Duty Characteristics

Notes: 1. The percentage of a single timing cycle during which the output is low.

2. The percentage of a single timing cycle during which the output is high.

- Other Characteristics

Application Examples (1)

Overall Waveform Timing Diagram (for Application Examples (1))

Application Examples (2) (Some Pointers on Use)

1. Inductor, Power MOS FET, and Diode Connections

2. Turning Output On and Off while the IC is On

Application Examples (3)

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor ome page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

